Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(μ-hydrogen 5-sulfosalicylate)bis[aqua-(1,10-phenanthroline)lead(II)]

Jin-Feng Li, ${ }^{\text {a }}$ Ya-Juan Zhao, ${ }^{\text {b }}$ Xin-Hua Li^{b} and Mao-Lin Hu^{b} *

${ }^{\text {a }}$ Quality Monitoring Centre of Agricultural Products, Wenzhou Agriculture Bureau, Wenzhou 325000, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: maolin@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.021$
$w R$ factor $=0.053$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, two $\left[\mathrm{Pb}(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ moieties are connected together by two Hssa anions, resulting in a centrosymmetric dimer (phen is 1,10-phenanthroline and Hssa is the hydrogen 5-sulfosalicylate dianion). Each $\mathrm{Pb}^{\text {II }}$ cation is surrounded by O atoms from a carboxylate group in a chelating fashion, a sulfonate group in a monodentate mode, a water molecule, and two N atoms from a phen ligand, forming a distorted $\mathrm{PbO}_{4} \mathrm{~N}_{2}$ octahedron.

Comment

In recent years, increasing attention has been focused on 5-sulfosalicylic acid ($\mathrm{H}_{3} \mathrm{ssa}$) and its metal complexes, owing to their biological activity, such as anti-ulcer, antimicrobial, antifungal and anti-inflammatory activities (Marzotto et al., 2001). However, only a few of these complexes have been structurally documented to date, for example, trimeric $\left[\mathrm{Cu}_{3}(\mathrm{ssa})_{2}(\text { bpy })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (bpy is $2,2^{\prime}$-bipyridine; Wang et al., 2004), one-dimensional polymeric $[\mathrm{Zn}(\mathrm{Hssa})(\mathrm{phen})-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Chen et al., 2003), two-dimensional polymeric $\left[\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{ssa}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]$ (Starynowicz, 2000) and three-dimensional polymeric $\left[\mathrm{Ag}_{3}\left(\mu_{4}\right.\right.$-hmt $)(\mu$ - Hssa$\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (hmt is hexamethylenetetramine; Zheng et al., 2003). To extend this research, we report here the crystal structure of the title compound, $\left[\mathrm{Pb}_{2}(\mathrm{Hssa})_{2}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (I).

In the centrosymmetric dimeric molecule of (I), each $\mathrm{Pb}^{\mathrm{II}}$ cation is coordinated by two O atoms from the carboxylate group of an Hssa anion, with a typical $\mathrm{Pb}-\mathrm{O}$ (carboxylate) distance range [2.354 (3)-2.684 (3) Å; Foreman et al., 2000], one sulfonate O atom from another Hssa anion with a $\mathrm{Pb}-\mathrm{O}$ distance of 2.742 (3) \AA, one water molecule with a $\mathrm{Pb}-\mathrm{O}$ distance of 2.530 (3) \AA, and two N atoms from one phen with a $\mathrm{Pb}-\mathrm{N}$ distances 2.577 (3) and 2.599 (3) \AA, forming a distorted $\mathrm{PbO}_{4} \mathrm{~N}_{2}$ octahedron (Fig. 1). The O1/O2/N1/N2 basal plane is seriously distorted, with a mean deviation of $0.44 \AA$; this can be attributed to the absence of crystal field-stabilization energy effects of Pb^{2+} cations (Foreman et al., 2000). The

Received 22 July 2004
Accepted 28 July 2004
Online 7 August 2004
\qquad

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The three-dimensional network formed in (I) via hydrogen-bonding interactions (dashed lines). H atoms have been omitted.
apical positions are occupied by one water molecule (O7) and sulfonate atom $\mathrm{O} 4^{i}$ [symmetry code: (i) $\left.2-x,-y,-z\right]$. Moreover, each pair of $\mathrm{Pb}^{\mathrm{II}}$ cations with the same coordination environment is bridged by two Hssa anions, forming a centrosymmetric dinuclear 16-membered ring, with a $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 1^{1}$ separation of 8.9678 (10) \AA.

There is an intramolecular O3-H3 $\cdots \mathrm{O} 1$ hydrogen bond in the Hssa ligand. In addition, there are intermolecular O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water ligand O 7 (Table 2), resulting in the formation of a three-dimensional network (Fig. 2).

Experimental

The title compound was synthesized using the hydrothermal method, from a mixture of 5-sulfosalicylic acid ($1 \mathrm{mmol}, 0.22 \mathrm{~g}$), $\mathrm{PbCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{mmol}, 0.35 \mathrm{~g}), 1,10$-phenanthroline ($3 \mathrm{mmol}, 0.54 \mathrm{~g}$) and water (20 ml) in a 30 ml Teflon-lined stainless steel reactor. The solution was heated to 415 K for 3 d . After slow cooling of the reaction system to room temperature, the colourless block crystals of (I) were collected and washed with distilled water (yield 64%).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]} \\
& M_{r}=1243.14 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.2520(11) \AA \\
& b=10.2384(13) \AA \\
& c=11.3422(15) \AA \\
& \alpha=84.979(2)^{\circ} \\
& \beta=84.407(2)^{\circ} \\
& \gamma=78.970(2)^{\circ} \AA^{\circ} \\
& V=933.8(2) \AA^{3}
\end{aligned}
$$

Data collection

Bruker APEX CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.073, T_{\text {max }}=0.161$
4971 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.053$
$S=1.05$
3307 reflections
279 parameters
H atoms treated by a mixture of independent and constrained refinement

3307 independent reflections
3126 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-9 \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-5 \rightarrow 13$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0335 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.74$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.86 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0189 (6)

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Pb} 1-\mathrm{O} 1$	$2.354(3)$	$\mathrm{Pb} 1-\mathrm{N} 2$	$2.599(3)$
$\mathrm{Pb} 1-\mathrm{O} 7$	$2.530(3)$	$\mathrm{Pb} 1-\mathrm{O} 2$	$2.684(3)$
$\mathrm{Pb} 1-\mathrm{N} 1$	$2.577(3)$	$\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.742(3)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 7$	$75.64(11)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{O} 2$	$108.80(11)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 1$	$75.07(10)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 2$	$138.34(10)$
$\mathrm{O} 7-\mathrm{Pb} 1-\mathrm{N} 1$	$131.98(12)$	$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$102.56(11)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$88.59(10)$	$\mathrm{O} 7-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$147.10(11)$
$\mathrm{O} 7-\mathrm{Pb} 1-\mathrm{N} 2$	$77.80(11)$	$\mathrm{N} 1-\mathrm{Pb} 1-4^{\mathrm{i}}$	$76.65(9)$
$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$64.31(10)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$135.05(9)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 2$	$51.60(10)$	$\mathrm{O} 2-\mathrm{Pb} 1-\mathrm{O} 4^{\mathrm{i}}$	$73.83(10)$
$\mathrm{O} 7-\mathrm{Pb} 1-\mathrm{O} 2$	$80.31(11)$		

Symmetry code: (i) $2-x,-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 . O 1	0.82	1.81	2.542 (4)	147
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 5^{\text {ii }}$	0.810 (18)	1.844 (19)	2.653 (5)	176 (5)
O7-H7B $\cdots \mathrm{O}^{\text {iii }}$	0.820 (18)	1.98 (2)	2.733 (5)	152 (4)

Symmetry codes: (ii) $1-x,-y,-z$; (iii) $x, y, 1+z$.
The water H atoms were located in difference-density maps and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.82 (2) and 1.39 (1) \AA, respectively, and with $U_{\text {iso }}=0.035 \AA^{2}$. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.93(\mathrm{C}-\mathrm{H})$ and $0.82 \AA(\mathrm{O}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the Zhejiang Provincial Natural Science Foundation, China (grant No. 202137).

metal-organic papers

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z. F., Shi, S. M., Hu, R. X., Zhang, M., Liang, H. \& Zhou. Z. Y. (2003). Chin. J. Chem. 21, 1059-1065.
Foreman, M. R. S. J., Gelbrich, T., Hursthouse, M. B. \& Plater, M. J. (2000). Inorg. Chem. Commun. 3, 234-238.

Marzotto, A., Clemente, D. A., Gerola, T. \& Valle, G. (2001). Polyhedron, 20, 1079-1087.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Starynowicz, P. (2000). J. Alloys Compd. 305, 117-120.
Wang, W. G., Zhang, J., Song, L. J. \& Ju, Z. F. (2004). Inorg. Chem. Commun. 7, 858-860.
Zheng, S. L., Zhang, J. P., Chen, X. M. \& Ng, S. W. (2003). J. Solid State Chem. 172, 45-52.

